TRANSACTIONS

OF THE

SOUTH AFRICAN PHILOSOPHICAL SOCIETY.

NOTE ON THE THREE-POINT, OR POTHENOT'S, PROBLEM.

> By H. G. Fourcade.
> (Read January 27, 1897.)

The ordinary methods of computation of the position of a point, given the angles subtended by three other points of known positions are chiefly :-

> First method.

B 1. Compute the length and "angle of direction" of a from the co-ordinates of C and A .
2. Compute the length and angle of direction of β from C and B.
3. Put $\mathrm{PAC}=x, \mathrm{PBC}=y$. Then $\tan \frac{1}{2}(x-y)=\tan \left(z-45^{\circ}\right) \tan \frac{1}{2}(x+y)$ Where

$$
\tan z=\frac{a \sin \beta}{b \sin a}
$$

and

$$
{ }_{51}^{\frac{1}{2}}(x+y)=180^{\circ}-\frac{1}{2}(a+\beta+\mathrm{C}) .
$$

4. Compute the co-ordinates of P either from triangle PCA or triangle PBC.

Second method.

1. Compute the length and angle of direction of C from the co-ordinates of A and B .
2. Compute the co-ordinates of O from the triangle OAB in which $\mathrm{OAB}=\beta$ and $\mathrm{OBA}=a$.
3. Compute the angle of direction of OC from the co-ordinates of O and C .
4. Compute the co-ordinates of P either from triangle POA or PBO .

Both these methods are avoided by many surveyors on account of their length. A shorter method will now be given, with a numerical example showing the arrangement of the computation.

Taking the middle point C for origin, put $x^{\prime} y^{\prime}$ and $x^{\prime \prime} y^{\prime \prime}$ for the co-ordinates of A and B. The equations to the circles (1) through A and C and containing the angle $a(2)$ through C and B and containing the angle β are

$$
\begin{aligned}
& \tan \alpha\left\{y\left(y-y^{\prime}\right)+x\left(x-x^{\prime}\right)--x y^{\prime}+y x^{\prime}=0\right. \\
& \tan \beta\left\{y\left(y-y^{\prime \prime}\right)+x\left(x-x^{\prime \prime}\right)-y x^{\prime \prime}+x y^{\prime \prime}=0\right.
\end{aligned}
$$

reducible to

$$
\begin{aligned}
& y^{2}+x^{2}+\mathrm{A} y-\mathrm{B} x=\mathrm{O} \\
& y^{2}+x^{2}-\mathrm{C} y+\mathrm{D} x=\mathrm{O}
\end{aligned}
$$

Where

$$
\begin{array}{ll}
\mathrm{A}=x^{\prime} \cot a-y^{\prime} & \mathrm{B}=y^{\prime} \cot a+x^{\prime} \\
\mathrm{C}=x^{\prime \prime} \cot \beta+y^{\prime \prime} & \mathrm{D}=y^{\prime \prime} \cot \beta-x^{\prime \prime}
\end{array}
$$

Then

$$
\begin{gathered}
{ }_{x}^{\prime}=\frac{\mathrm{B}+\mathrm{D}}{\mathrm{~A}+\mathrm{C}}=m \\
m^{2} x+x=\mathrm{B}-m \mathrm{~A} \\
x=\frac{\mathrm{B}-m \mathrm{~A}}{m^{2}+1} \quad y=m x
\end{gathered}
$$

Example.

A - 1811.59 - $1018.55 \quad y^{\prime}=-1376.55 \quad x^{\prime}=+406.90$			
$\mathrm{B}+\quad 6.81$	$-930 \cdot 26$	$y^{\prime \prime}=+441.85 x^{\prime}$	$\prime \prime=+495 \cdot 19$
C- $435 \cdot 04$	$-1425 \cdot 45$	$0 \cdot 00$	$0 \cdot 00$
${ }^{\prime}=64 \cdot 7 \cdot 40$			
$\beta=20 \cdot 33 \cdot 20$			
$+9 \cdot 685719$	$+9 \cdot 685719$	$+0 \cdot 425980$	$+0.425980$
+2.609488	-3.138792	+2.694772	+2.645275
$+2 \cdot 295207$	$-2 \cdot 824511$	+3.120752	$+3.071255$
+197.34	-667.59	+1320.54	+1178.30
$-y^{\prime}+1376 \cdot 55$	$+x^{\prime}+406 \cdot 90$	$+y^{\prime \prime}+441 \cdot 85$	$-x^{\prime \prime}-495 \cdot 19$
A $+1573 \cdot 89$	B-260.69	$\mathrm{C}+1762 \cdot 39$	$\mathrm{D}+683 \cdot 11$
$\mathrm{A}+3 \cdot 196974$	-2.662730	$\mathrm{A}+1573 \cdot 89$	B - $260 \cdot 69$
$m 9 \cdot 102482$	0.006906	$+3336.28$	$+422 \cdot 42$
$+2 \cdot 299456$	$x-2 \cdot 655824$	2.625744	$m 9 \cdot 102482$
-mA -199.28	9102482	$3 \cdot 523262$	$m^{2} 8 \cdot 204964$
$+\mathrm{B}-260 \cdot 69$	$y-1.758306$	$m^{2}+1$	$=1.01603$
$-459 \cdot 97$		$y-57 \cdot 32$	$x-452 \cdot 71$
		$-435 \cdot 04$	$-1425 \cdot 45$
	Co-ordinates	of P : $-492 \cdot 36$	- $1878 \cdot 16$

A check is afforded by the computation of the angles of direction PA and PB . PC is given by

$$
\tan -\mathrm{x} m .
$$

March, 1898.

